Fingerprint images segmentation based on fuzzy C- mean theory and statistical features
نویسندگان
چکیده
Fingerprint segmentation is a crucial and important step of image processing in automatic fingerprint identification. Because, it is very important for alright fingerprint features extraction, such as, singular points, bifurcation and ridge ending minutia’s. The aim of the segmentation of fingerprint is to extract the interest area (foreground) and to exclude the background regions, in order to reduce the time of subsequent processing and to avoid detecting false features. This paper presents a new approach of fingerprints segmentation. This approach is based on variance image and combined fuzzy C-mean algorithm with the statistical features. Fingerprint segmentation results from the proposed method are validated and the accuracy of segmentation sensitivity for the test data available is evaluated. We have tested this technique on more than 1000 images fingerprint taken from “CASIA Fingerprint Image Database Version 5.0” (CASIA-FingerprintV5). Then a comparative study with the existing techniques is presented. The experimental results demonstrate the superiority, the effectiveness and the robustness of the proposed method.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملREGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...
متن کاملAlgorithm Based on Point Feature for Fingerprint Image Segmentation
The segmentation of fingerprint images is very important to automatic fingerprint recognition system. To decide which part of the image belongs to the foreground and which part to the background, different methods have been proposed. Some of the traditional methods are introduced and implemented in this paper and a novel pixel based fingerprint segmentation algorithm is proposed. Two kinds pixe...
متن کامل